

Institute	Energy and Mechanical engineering
	-
Department	Mechanical engineering

EDUCATIONAL PROGRAM

6B07220 - Machines and technologies for processing new materials the name of educational program

Code and name field of education:

6B07-Engineering, manufacturing and civil engineering

Code and classification direction of personnel training:

6B072- Manufacturing and processing

Group of educational programs:

B069 Production of materials (glass, paper, plastic, tree)

EP purpose: 6 EP type: 6

Period of study: 4 years Volume of the credits: 240

Educational program 6B07220 – Machines and technologies for the name of educational program) processing new materials

was approved at the meeting of K.I. Satbayev KazNRTU Academic Council

Minutes 12 dated « 22 » 04 2024.

was reviewed and recommended for approval at the meeting of K.I. Satbayev KazNRTU Educational and Methodological Council

Minutes <u>6</u> dated «<u>19</u> » <u>04</u> 20<u>24</u>.

Educational program <u>6B07220 – Machines and technologies for</u>
(the name of educational program)

processing new materials

developed by Academic committee in the direction of "6B072-Manufacturing and processing"

Full name	Academic degree/ academic title	Position	Workplace	Signature
Chairperson of			NILO W NIDTH	
Yelemessov K.	Professor	Director of the Institute of Energy and Mechanical Engineering named after A.Burkitbayev	NAO KazNRTU named after K.I. Satpayev	64
Teaching staff:				
Nugman E.Z.	Doctor PhD, Assoc. Prof.	Head of the Department of "Mechanical Engineering"	Institute of Energy and Mechanical Engineering named after A.Burkitbayev	44
Uderbayeva A.E.	Doctor PhD	Assoc. Professor	Department of Mechanical Engineering	syl
Employers:				
Dyussebayev I.M.	Doctor PhD	Chief Engineer	LLP, Almaty plant "Electroshield"	Seul -
Students				
Baybatsha A.K.		1st year doctoral student	Department of "Mechanical Engineering"	M

Table of contents

	List of abbreviations and designati	4
1.	Description of educational program	5
2.	The purpose and objectives of educational program	8
3.	Requirements for evaluating the learning outcomes of an	
	educational program	8
4.	Catalog of disciplines	8
4.1	General information	8
4.2	The relationship between the achievability of the formed learning	
	outcomes according to the educational program and academic	
	disciplines	11
5	Curriculum of the educational program	24

List of abbreviations and designate

ECTS European Credit Transfer and Accumulation System

BD Basic disciplines

HEI higher education institution

SOSE State obligatory standard of education

KazNTU Kazakh national research Technical University named after K.I.

Satpaeva

MOP Modular educational program

NSC Non-profit joint stock company

GED General education disciplines

ED Educational program

MD Major disciplines

WC Working Curriculum

SIW Student's independent work

EMC Educational and Methodological Council

AC Academic Council

1 Description of educational program

EP 6B07220 - "Machines and technologies for processing new materials" is focused on the result of training, which forms professional competencies in accordance with the requirements of the labor market.

The objects of professional activity of the bachelor according to EP 6B07220 are machine-building plants, repair and mechanical bases of power systems, metallurgical enterprises, transport and automobile facilities, mining and processing industries, research organizations, design and technology organizations, design organizations, marketing and transport and operational services, service stations.

Bachelor in EP 6B07220 - "Machines and processing of new materials" can perform the following professional activities:

- 1. Design and technological development, implementation and operation of systemic, resource-saving technologies; development and implementation of technological processes for processing and assembling products; automation of machine-building production; creation of continuous flow production processes, automated complexes, flexible automated production; introduction of highly efficient means of technological equipment, ensuring the environmental friendliness of machine-building production.
- 2. Organizational and managerial: organization of the production process, organization of the work of performers; setting a goal and forming a management task related to the implementation of professional functions; organization of production service; management of the production process, taking into account technical, financial and human factors; development of control algorithms; accounting and reporting planning, development of a business plan for an enterprise, planning to improve production efficiency;
- 3. Experimental research: the use of modern experimental methods for the study of processes occurring in machine-building production; research of new directions in the technology of modern mechanical engineering; study of types of processing in mechanical engineering; research of objects of automation in the field of mechanical engineering; scientific substantiation of methods for ensuring the quality of manufactured products and increasing labor productivity;
- 4. Design and engineering: development of advanced designs; optimization of design solutions, taking into account environmental and energy-saving technologies; examination of design and technological developments; development of draft, technical and working designs of complex products using computer-aided design tools and best practices in the development of competitive products; carrying out technical calculations for projects, technical, economic and functional cost analysis of the effectiveness of designed products and structures; assessment of innovative potentials of projects; assessment of innovative risks of commercialization of projects.

Based on the theoretical and practical knowledge gained, the bachelor of technical sciences in the educational program forms professional competencies and must:

have an idea:

- about scientific, philosophical and religious pictures of the universe; about the essence, purpose and meaning of human life; variety of forms of human knowledge; spiritual values in creative and everyday life;
- about the processes and phenomena occurring in animate and inanimate nature; the possibilities of modern scientific methods of cognition of nature for solving natural science and professional problems;
- about the essence and social significance of his future profession, the importance of the disciplines that determine the specific area of his activity, their relationship in an integral system of knowledge;
- about the role of science in the development of civilization, the relationship between science and technology and related modern social and ethical problems, the value of scientific rationality;
- about the main directions, trends, problems and achievements in the field of pressure treatment of materials of different nature;
- about the features of plastic deformation and shaping of materials on a metal and non-metal base;
 - about progressive technologies of processing materials by pressure;
 - about the problems of environmental protection, ecology and life safety; *know:*
- theoretical bases of initiation of plastic deformation, influence, influence of thermomechanical and structural factors on technological and operational properties of products and semi-finished products (material products);
- on the relationship between the composition of raw materials, technological stages and technical and economic indicators of processes;
- methods for predicting, calculating and evaluating plastic and strength properties in the development of rational modes of shaping and deformation;
- basic principles of modeling of technological processes under different schemes of stress state and loading stiffness;
- methods for calculating the parameters of technological processes and the main characteristics of technological operations of the OMD;
- the main methods of building a CAD for the processing of materials and the choice of control parameters of the technological cycle for obtaining high-quality products.
 - fundamentals of economic theory, industry economics;
- issues of labor protection and safety, environmental legislation; be able to:
 - use normative and legal documents related to professional activity;
- to conduct a conversation-dialogue in the state and foreign languages, using the rules of speech etiquette, to read literature in the specialty without a dictionary in order to search for information, to translate texts with a dictionary, to make annotations, abstracts and business letters in a foreign language;
- analyze the possibilities of shaping and plastic deformation of materials of different nature when changing the temperature-velocity, deformation-geometric and structural-phase parameters of the impact;

- formulate technical and economic requirements for the organization and management of technological processes for processing materials by pressure;
- assess the quality of products, identify and eliminate the causes of defects, develop measures to prevent them;
- analyze the production and economic activities of your unit and / or the entire enterprise, including using modern software products;
 - exercise control over technological and labor disciplines;
- use information technology to collect information and application software packages in solving design and production problems.

have skills:

- knowledge of the state language and the language of interethnic communication; lexical and grammatical minimum of one of the foreign languages;
- on the basics of industrial relations and management principles, taking into account technical, financial, psychological and human factors;
- work with software products, modern information technologies for searching, collecting, processing, analyzing and storing scientific and technical information;
- possession of special and scientific terminology in the field of processing materials by pressure;
- design and production of equipment and tools for OMD operations, organization of workshops for the processing of materials;
- selection of the necessary equipment, compilation of technological (route) maps, calculation of technical and economic indicators of production efficiency and reduction of wasteful costs;
- mathematical modeling of MMD processes and rationalization of the modes of preliminary preparation of materials, methods of their thermal and deformation processing.

be competent:

- in matters of technological and environmental safety, protection of human life, legal norms, international standards, technical means and methods of information technology used abroad.

The graduate of the educational program must:

- 1. Possess broad fundamental knowledge, be proactive, have the ability to adapt to changing requirements of the labor market and technology, be able to work in a team (general educational competencies);
- 2. Know the ethical and legal norms that regulate the relationship of a person to a person, society, the environment, be able to take them into account when developing environmental and social projects (socio-ethical competencies);
- 3. Be able to master the commercial, financial, administrative functions of management; skills of situational analysis, market analysis, economic methods of management (commercial calculation, financial policy formation, program-target methods of organization management), methods of modeling economic processes, evaluation of economic projects, a professional approach to studying the main problems in the field of economic and production management (economic and organizational and managerial competencies);

4. To be able to build and use models to describe and predict various phenomena, to carry out their qualitative and quantitative analysis (professional competencies);

2 The purpose and objectives of additional educational program

EP purpose:

Training of highly qualified and competitive specialists for the successful solution of scientific and engineering problems, capable of designing and implementing advanced technological processes of materials processing by pressure.

EP tasks:

- formation of knowledge of modern information technologies;
- acquisition of theoretical and practical knowledge of computer design of blank production products;
- possession of methods and methods of mathematical and 3D modeling;
- acquisition of professional competencies in accordance with the requirements of industry professional standards;
- acquisition of knowledge of the basics of technological processes of stamping, forging, rolling and design of technological processes for obtaining blanks;
- acquisition of knowledge of new materials, nanomaterials, nanopowders and technologies for their production;
- formation of knowledge about the main trends in the development of technologies for processing new materials, the introduction of innovative digital technologies.

3 Requirements for evaluating the learning outcomes of an educational program

Description of mandatory standard requirements for graduating from a university and conferring an academic bachelor's degree: mastering at least 240 academic credits of theoretical training and final thesis

4 Passport of the educational program

4.1 General information

No	Field name	Note
1	Code and name field of education	6B07- Engineering, manufacturing and civil
		engineering
2	Code and classification direction of	6B072 - Manufacturing and processing
	personnel training	
3	Group of educational programs	6B069- Production of materials (glass, paper,
		plastic, tree)
4	Name of the educational program	6B07220 Machines and technologies for
		processing new materials
5	Short description of the educational	The educational program "Machines and
	programm	technologies for processing new materials" lays the
		foundations of technology for processing materials by
		pressure and procurement, students will learn in-

		depth knowledge of special courses for processing composite and polymer materials (additive technologies, CAD/CAM/CAE/PLM/PDM) modeling skills and research of various processing processes They will acquire skills in designing production and industrial systems, creating machines for pressure treatment, and operating modern equipment., controlled by computers, including additive technologies. Primary attention is paid to the skills of developing technological routes for manufacturing parts and designing technological operations, developing and implementing control programs, developing and using structural documentation for designing processes for the preparation of parts.
6	EP purpose	Training of highly qualified and competitive specialists for the successful solution of scientific and engineering problems, capable of designing and implementing advanced technological processes of materials processing by pressure.
7	EP type	New EP
_	Level on NQF	6
	Level on SQF	6
_	EP distinctive features	No
11	List of competencies of the educational	- Ability to apply general engineering
	program: Learning outcomes of the educational	knowledge, methods of mathematical analysis and modeling in professional activities; - Ability to analyze and evaluate production and technological processes; - Willingness to use modern information technologies in modeling technological processes, processing materials by pressure; - Willingness to apply advanced methods for calculating die equipment and tools in blank production; - Willingness to apply new materials, technologies for their production, additive technologies. ON1 Applies basic knowledge of fundamental
	program:	disciplines of mathematics, physics, chemistry, digital technologies in production processes of materials processing by pressure. ON2 Demonstrates commitment to ethical values, has socio-cultural and business communication skills, is able to independently find the right solutions in non-standard situations; applies knowledge of economic laws, life safety, ecology; culture of academic integrity. ON3 Substantiates the application of advanced methods of computer-aided design and construction in the production processes of forging and stamping production. ON4 Searches, analyzes and evaluates information necessary for setting and solving professional tasks using information technologies in the field of

	procurement ON5 Evaluates additive technologies as a promising direction for improving the technology of processing composite materials, restoring machine components and parts. ON6 Develops design and technological documentation on the use, operation, maintenance of technological equipment, tooling and tools, in the production of blanks and finished parts. ON7 Participates in the design of forging, stamping, pressing equipment, tooling and tools in accordance with technical specifications using computer-aided design software. ON8 Applies progressive methods of research on the patterns of changes in the deformation properties of various materials, the influence of various technological factors on the quality of products. ON9 Applies promising methods, methods and means of obtaining, storing, processing information to solve communication problems; modern information technologies. ON10 Demonstrates readiness to use effective methods and methods of automation of technological processes of pressure treatment; advanced software for solving engineering and technological problems in the field of pressure treatment of materials.
13Form of training	daytime
14Period of study	4 years
15 Volume of the credits	240
16Language of education	russian, kazakh
17 The awarded academic degree	Bachelor of Engineering and Technology
18Developer(s) and authors:	The EP was developed by the academic committee in the direction "6B072-Production and manufacturing industries"

4.2. The relationship between the achievability of the formed learning outcomes according to the educational program and academic disciplines

№	Name of	Short description of discipline	Num										
	discipline		ber	ON1	ON 2	ON 3	ON 4	ON 5	ON 6	ON 7	ON 8	ON 9	ON10
	•		of										
			credi										
			ts										
		Cycle of general e		on dis	cinline	26							
		Compone			Сіріііі	CB							
1	Fundamentals of	The course introduces students to the improvement of socio		v									
1	anti-corruption	economic relations of Kazakhstan society, psychologica		•									
	culture and law	features of corrupt behavior. Special attention is paid to the											
	Cartare arra ra vi	formation of an anti-corruption culture, legal responsibility											
		for acts of corruption in various spheres. The purpose o											
		studying the discipline «Fundamentals of anti-corruption											
		culture and law» is to increase public and individual lega											
		awareness and legal culture of students, as well as the											
		formation of a knowledge system and a civic position or											
		combating corruption as an antisocial phenomenon											
		Expected results: to realize the values of mora											
		consciousness and follow moral norms in everyday practice											
		to work on improving the level of moral and legal culture; to											
		use spiritual and moral mechanisms to prevent corruption.											
2	Fundamentals of	Discipline studies the foundations of economics and	1 5	V									
		entrepreneurial activity from the point of view of science and											
	entrepreneurship	law; features, problematic aspects and developmen											
		prospects; the theory and practice of entrepreneurship as											
		system of economic and organizational relations of business	3										
		structures; The readiness of entrepreneurs for innovative											
		susceptibility. The discipline reveals the content o	f										
		entrepreneurial activity, the stages of career, qualities	,										
		competencies and responsibility of the entrepreneur	,										
		theoretical and practical business planning and economic											
		examination of business ideas, as well as the analysis of the											
		risks of innovative development, the introduction of nev	7										
		technologies and technological solutions.											
3	Ecology and life	The discipline studies the tasks of ecology as a science		V									
	safety	environmental terms, the laws of the functioning of natura	1										

_	1									
		systems and aspects of environmental safety in the								
		conditions of labor activity. Monitoring of the environment								
		and management in the field of its safety. Sources of								
		pollution of atmospheric air, surface, groundwater, soil and								
		ways to solve environmental problems; life safety in the								
		technosphere; natural and man-made emergencies								
4	Fundamentals of	The purpose of the discipline is to form the skills of	5		v					
-	scientific research	organizing and planning scientific research, methods of	Ü		·					
	methods	conducting experimental research, methods of information								
	methods	processing. The discipline introduces students to the goals,								
		objectives and stages of scientific research. The terms and								
		concepts, the methodology of the experiment, mathematical								
		methods of processing research results are considered. The								
		concept of engineering, laboratory and industrial								
		experiment, bench research. The discipline introduces the								
		basics of the theory of solving inventive problems,								
		algorithmic methods of finding technical solutions and their								
		optimization. Highlights the main mathematical methods of								
		optimization, the use of artificial intelligence capabilities to								
		solve optimization problems; issues of search, accumulation								
		and processing of scientific information.								
5	Basics of Financial	Purpose: formation of financial literacy of students on the basis of	5	V						
	Literacy	building a direct link between the acquired knowledge and their								
		practical application. Contents: using in practice all kinds of tools								
		in the field of financial management, saving and increasing savings,								
		competent budget planning, obtaining practical skills in calculating, paying taxes and correctly filling out tax reports, analyzing								
		financial information, orienting in financial products to choose								
		adequate investment strategies.								
		Cycle of basi	c dice	pinling	C		<u> </u>	l	l	
		University		-	3					
6		Objectives: to study the basic physical phenomena and laws			v					
J		of classical, modern physics; methods of physical research;	5		v					
		the relationship of physics with other sciences. The								
		following topics are considered: mechanics, dynamics of								
	Dhysics I									
	Physics I	rotational motion of a solid body, mechanical harmonic								
		waves, fundamentals of molecular kinetic theory and								
		thermodynamics, transport phenomena, continuum								
		mechanics, electrostatics, direct current, magnetic field,								
		Maxwell equations.								
/	Mathematics I	The course is based on the study of mathematical analysis in	5		V					
		a volume that allows you to study elementary functions and								

		solve the simplest geometric, physical and other applied problems. The main focus is on differential and integral calculus. The course sections include the differential calculus of functions of one variable, the derivative and differentials, the study of the behavior of functions, complex numbers, and polynomials. Indefinite integrals, their properties and methods of calculation. Certain integrals and their applications. Improper integrals.							
8	Physics II	The course studies the laws of physics and their practical application in professional activity. Solving theoretical and experimental-practical educational problems of physics for the formation of the foundations in solving professional problems. Assessment of the degree of accuracy of the results of experimental or theoretical research methods, modeling of physical condition using a computer, study of modern measuring equipment, development of skills for conducting test studies and processing their results, distribution of the physical content of applied tasks of the future specialty.		V			V		
9	Mathematics II	The discipline is a continuation of Mathematics 1. The course sections include elements of linear algebra and analytical geometry. The main issues of linear algebra are considered: linear and self-adjoint operators, quadratic forms, linear programming. Differential calculus of a function of several variables and its applications. Multiple integrals. The theory of determinants and matrices, linear systems of equations, as well as elements of vector algebra. The elements of analytical geometry on the plane and in space are included.		v			V		
	engineering design	General provisions of the methodology of engineering design. Stages of creating cars. Design procedures. Principles of engineering design. Engineering design methods. Manufacturability of machine designs.			V		v		
	Production workshops	The purpose of the discipline is to form knowledge about the technological processes of manufacturing machine parts and practical knowledge of metalworking. The workshops study the locksmith's workplace, locksmith and cutting tools, tool materials, work on universal metal-cutting machines (turning, drilling, milling and grinding). Familiarity with the purpose and classification of machines. Machining of workpieces on sheet bending machines, laser machine with numerical control, milling machining center.	5		V	V			

	7	·				•	•		
12	Standardization, interchangeability and technica measurements	The purpose of studying the discipline is to form students' knowledge of the basics of standardization, interchangeability and practical skills in performing technical measurements. The discipline studies the basic principles of standardization, types of interchangeability, uniform principles of building tolerance and fit systems for standard joints. Accuracy standards of smooth cylindrical, keyway, spline, threaded connections, cylindrical gears. Tolerances and fits of rolling bearings. Methods of measurement, measuring instruments and methods of processing multiple technical measurements are studied.	5	V	V				
13	Classic mechanics	The purpose of the discipline is to form the foundations of engineering thinking among students by studying the basics of mechanics and mastering the basic principles and laws of theoretical mechanics The content of the discipline: the basic laws of mechanical motion and mechanical interaction of material bodies; the basic concepts of the law of mechanics, methods for studying the equilibria of motion of a material point, a solid and a mechanical system	5	V	V				
14		The purpose of the discipline is to acquire theoretical and practical knowledge of the reliability of technical systems (machines). The fundamentals of probability theory and the application of the laws of probability theory to the analysis of technological and technical systems, including in smechanical engineering, in procurement production, are lstudied. With the help of probabilistic and statistical models, the problems of designing, manufacturing and controlling products are solved. The use of such models in the calculations and research of the accuracy of equipment and technological processes, in the development and selection of statistical methods for quality control of machine-building products.	5	v			v		
15	Modern construction materials	The purpose of the discipline is to form knowledge about modern materials used in mechanical engineering, progressive technological methods of their application. The classification of engineering materials, the main properties of structural materials, methods of their heat treatment are considered. Properties and characteristics of metal alloys, ceramic and composite materials, powder and synthetic superhard materials, multifunctional coatings. Methods of studying the structure and composition of materials, diagram of iron-cementite. The skills of analyzing the composition	5		V				V

	a									
		and structure of materials, choosing the material for specific								
		designs of machine parts are acquired.								
16		The purpose of the discipline is to acquire theoretical and	5		V	V				
		practical knowledge on the basics of electrical engineering								
		and electronics. The basic laws of the processes occurring in								
		electromagnetic and electronic circuits and methods for								
		determining the electrical quantities characterizing these								
	Electrical and	processes are studied. Methods of calculation of DC electric								
	Electronic	circuits are studied; analysis and calculation of linear AC								
	Engineering	circuits; analysis and calculation of magnetic circuits.								
	Engineering	Electromagnetic devices and electrical machines.								
		Fundamentals of electronics and electrical measurements.								
		The element base of modern electronic devices.								
		Fundamentals of digital and microelectronics,								
1.7		microprocessor tools.	_							
17		Stretching and compression. Stresses in cross sections and	5		V	V				
		deformations of a straight rod. Mechanical properties of								
		materials under tension and compression. Calculation of								
		strength and stiffness in tension-compression. Geometric								
	U	characteristics of flat sections. Shear and torsion. Calculation								
	materials	of strength and torsional stiffness. Bend. Normal and								
		tangential bending stresses. Calculation of bending strength.								
		Theory of stressed and deformed states. The limit state								
		hypothesis. Complex resistance. Stability of the equilibrium								
		of deformable systems. Dynamic load.								
18		The purpose of the discipline is to provide knowledge of:	4					V	V	
		modern methods of heating workpieces for subsequent								
		pressure treatment; designs of heating installations used for								
		these purposes; solving problems related to the design,								
		search and selection of furnace designs and heating								
	Heating and heating	installations. The basic principles of the theory of heat								
	devices	transfer, the mechanics of gases, the principles of calculation								
	de vices	and selection of fuel, the basics of calculation of								
		technological processes of metal heating are considered.								
		Basic principles of design, selection of heating devices;								
		design of heating devices, their application in the design of								
		forging and stamping shops, sites.								
19		Purpose: to acquire knowledge of calculations and design of	5		v	v				
17	Dagas of designing	machine parts and assemblies, taking into account the criteria	3		v	v				
	and details of cars	of strength, reliability and stability. Contents_ general								
		principles of design and construction, construction of models		1						

_	7							 		
		and calculation algorithms for standard machine parts taking								
		into account performance criteria, fundamentals of theory								
		and methodology for calculating standard machine parts,								
		computer technologies for designing assemblies and								
		machine parts. Basic requirements for machine parts and								
		assemblies_								
20		The purpose of the discipline is to acquire the theoretical	5			V				v
		foundations of qualimetry and practical knowledge of quality								
		analysis, organization of statistical quality control of								
		engineering products. The regulatory framework of the								
	Qualimetry in	technology for assessing the quality level, quality control								
	mechanical	methods are being studied. The nomenclature of product								
	engineering	quality indicators, expert methods of quality assessment are								
		1								
		considered. The skills of quality analysis, application of								
		various assessment methods, organization of work in the								
0.1		field of quality assessment are acquired.								
21		The main purpose of the discipline is to study the methods of	5			V	V			
		manufacturing forgings, the operations of technological								
		processes, the principles of designing forgings and die								
	Forging and hot	tooling. Production of workpieces and parts by forging and								
	stamping and not	hot stamping selection and calculation of the stamping force,								
	technology	temperature regime, tools for processing metals and alloys.								
	cemology	Study of the structure, mechanical properties of forgings and								
		finished products after the forging and hot stamping process.								
		Study of the structure, mechanical properties of forgings and								
		finished products after the forging and hot stamping process.								
22		The purpose of the discipline is the formation of	5			V			v	
		comprehensive knowledge of solving economic problems of								
		industrial enterprise development. The basic concepts of								
		engineering economics, economic aspects of the quality of								
		the production process, machine-building products,								
	Engineering	investments, fixed and working capital of the enterprise,								
	Economy	business processes, the issue of planning and forecasting of								
		production, economic efficiency of the enterprise are								
		studied. Skills and abilities are acquired to evaluate the								
		activities of production, independently understand the								
2.7		changing market conditions.								
23		The purpose of the discipline is to acquire theoretical and	6				V			V
		practical knowledge in the field of computer-aided design of								
	of PMP processes	technological processes for processing materials by pressure.								
		The discipline outlines the basic principles of modeling and								

	¬									
		CAD development of OMD processes. Aspects of								
		constructing algorithms for calculating specific CAD tasks								
		are considered. Examples of the use of various CAD systems								
		for tool design are presented OMD - QForm technological								
		process modeling program.								
24		The purpose of the discipline is the formation of knowledge	5			V		v		
		in the field of hydraulics, hydraulic and pneumatic machines								
		for processing, feeding and moving liquids and gases. The								
		discipline deals with the issues of hydrostatics: basic								
	Hydraulics and	physical properties of liquids and gases; hydrodynamics:								
		motion of liquids and gases, Euler and Bernoulli equations,								
	drive	modeling of hydrodynamic phenomena; hydraulic machines								
		and hydraulic drives. Fundamentals of pneumatic actuators,								
		pneumatic motors, equipment of pneumatic systems. The								
		basics of operation of combined hydraulic pneumatic								
		actuators are studied.								
-		Cycle of basis	a dia	inlina	σ.		Į			
					8					
	1	Elective c		nent						
25		In the process of study of discipline students get skills of	5					v	V	
		global analysis of technology and equipment for the special								
		methods of OMD. Group methods of the cold stamping.								
		Stamping by rubber, operations, by the выполняемы method								
	Theory of materials	of stamping by rubber. Rigging for stamping rubber.								
	processing by	Gidroshtampovka. Rigging and equipment at								
	pressure	гидроштамповке. Магнито-импульсная treatment.								
		Electro-hydraulic stamping. Stamping by an explosion.								
		Rolling and rolling. Cold deformation of rolling of circular								
		purveyances and wares a method. Rigging and equipment for								
		rotary deformation.								
26	Fundamentals of	Purpose: to familiarize students with the basic concepts, methods	5	v	v					
	Artificial	and technologies in the field of artificial intelligence: machine	2	'	•					
	Intelligence	learning, computer vision, natural language processing, etc.								
	intemgence	Contents: general definition of artificial intelligence, intelligent								
		agents, information retrieval and state space exploration, logical								
		agents, architecture of artificial intelligence systems, expert								
		systems, observational learning, statistical learning methods,								
		probabilistic processing of linguistic information, semantic models,								
		natural language processing systems.								
27		The purpose of the discipline is to acquire theoretical and	5				V		V	
		practical knowledge on the creation, operation and								
	stamping equipment	improvement of forging and stamping equipment. The								
		discipline examines the composition and structure of forging								

	_									
		and stamping equipment (FSE), the principles of design and								
		analysis of FSE; structure, kinematic and force analysis of								
		crank machines; stamping and forging hammers, hydraulic								
		forging and stamping machines. Forging and stamping								
		machines for special purposes are studied: horizontal forging								
		machines, bending and sheet-stamping presses, rotary								
		forging machines, principles of their operation, issues of								
		improving the reliability of operation.								
28	Fundamentals of	Purpose: the goal is for students to master the theoretical	5	v				V		
	sustainable	foundations and practical skills in the field of sustainable								
	development and	development and ESG, as well as to develop an understanding of								
	ESG projects in	the role of these aspects in the modern economic and social								
	Kazakhstan	development of Kazakhstan.								
	Kazakiistaii	Contents: introduces the principles of sustainable development and								
		the implementation of ESG practices in Kazakhstan, includes the								
		study of national and international standards, analysis of successful								
		ESG projects and strategies for their implementation in enterprises								
		and organizations.								
29		The purpose of the discipline is to acquire knowledge on the	5				V	V		
		design of forging and stamping equipment in procurement								
		production. Basic concepts about the production technology								
		of standard parts of forging and stamping equipment.								
	Design of forging	Processing of bab, shabots, guides and shtampovyh plates.								
	and stamping	Technological processes of assembly of forging and pressing								
	equipment	machines. Features and technological processes of								
		production of the main parts of forging and stamping								
		equipment, assembly processes of forging and stamping								
		equipment used for the manufacture of forging and stamping								
		equipment, stamps and die tooling.								
30	Legal regulation of	Purpose: the goal is to form a holistic understanding of the system	5		V					
50	intellectual property	of legal regulation of intellectual property, including basic	5		v					
	intenectual property	principles, mechanisms for protecting intellectual property rights								
		and features of their implementation.								
		Content: The discipline covers the basics of IP law, including								
		copyright, patents, trademarks, and industrial designs. Students								
		learn how to protect and manage intellectual property rights, and								
L		consider legal disputes and methods for resolving them.				 				
31	Occupational health	Purpose: formation of knowledge, skills and abilities of students on	5	v					v	
	and industrial safety	the occupational health and safety management system at								
	(by industry)	enterprises, taking into account industry specifics.								
	(c) massing)	Contents: regulatory and legal framework for occupational safety;								
		harmful production factors; accidents and occupational diseases at								
1		work; industrial sanitation and occupational health; regulatory and								

	1	(1 . 1 . 1		1			ı			ı	1	
		technical regulation in the field of industrial safety; measures to protect employees at the enterprise										
	<u> </u>	Cycle of profi	الم مان	oinlin	0.0		Į.			ļ		
		University		-	CS							
32		The purpose of the discipline is to study the technological						v		v		
32		foundations of cold stamping. As a result of studying the	3					v		v		
		discipline, the future specialist must master the methods of										
		developing the technological process of cold stamping, know										
		the rules for designing technological equipment and										
	Cold stamping	equipment selection. The discipline studies the										
	technology	technological processes of cold stamping, reveals the content										
		and features of the process of developing and calculating the										
		processes of stamping and die tooling, their layout and										
		structure, characteristics, requirements, design evaluation										
		criteria.										
33		The purpose of the discipline is to acquire knowledge of	5			v				V		
		technological methods for obtaining and processing blanks										
		and machine parts. The discipline studies the general										
	Processes of	characteristics of metals and alloys used in mechanical										
	machine building	engineering, the technological foundations of metallurgical										
	production	production, the technology of metal processing by pressure,										
		the technology of foundry production, the technology of										
		welding production. The technology of production of blanks										
		and machine parts from non-metallic materials is considered;										
2.4		features of welding of various metals and alloys.	4									
34		The purpose of the course is to familiarize students with	4							V		V
		various automatic design systems and acquire the necessary knowledge and skills to develop various technical										
	Computer-aided	documentation and perform calculations using a personal										
	design systems of	computer. The task of the discipline: to give the necessary										
	machine structures	knowledge on various kinds of automatic design systems of										
		technical and design documentation, to teach how to use the										
		knowledge gained.										
	L	Cycle of profi	le dis	ciplin	es		<u> </u>					
		Componen		-								
35		The purpose of the discipline is to master the necessary						V	v			
		techniques for designing and calculating stamps for cold	3					·	,			
	Tool and mold	sheet stamping and molds for the manufacture of parts from										
	design	press materials. Objectives of the discipline: the student must										
		learn how to develop working drawings of parts made by										

_	•								
		cold stamping from sheet material and pressing from a press material; learn how to design stamps for various							
		technological operations of cold stamping, as well as molds							
		for compression pressing of plastic parts.							
36		The purpose of studying the discipline is the formation of knowledge, skills and abilities in the field of advanced	6		v		V		
	Advanced materials processing technologies	technologies for processing machine-building materials and surfaces of machine parts. The discipline presents the types of surface treatment of workpieces by ultrasonic, electrophysical and electrochemical methods, laser treatment. Technologies of heat treatment and surface alloying of metals using plasma, electron beam, waterjet and							
		electroerosion methods. Methods of hardening treatment, methods of coating are considered.							
37		The construction and working conditions of rolling shop equipment, advantages and disadvantages of certain types of equipment, typical modern designs of rolling machine machines and mechanisms, prospects and directions for	6			V	V	V	
	Racics of decigning	improving rolling production equipment, technical and economic indicators of rolling shop equipment are							
		studied. The device and working conditions of equipment of							
		rolling shops, advantages and disadvantages of certain types							
		of equipment, typical modern designs of machines and							
		mechanisms of the rolling machine, prospects and directions							
		of improvement of equipment of rolling production, technical and economic indicators of equipment of rolling							
		shops are studied.							
38		The purpose of studying the discipline is to familiarize	6			v	V		
		students with the technological processes used in modern							
		welding production in the manufacture of various welded							
	Welding equipment	structures. The objectives of studying the discipline are to							
	and tools	acquire sufficient knowledge on the production of welded structures; to develop an engineering idea of the feasibility							
		of using certain technical means, techniques and methods							
		that provide conditions for the flow of welding processes in							
		the established modes.structures.							
39		The purpose of teaching the discipline is to form the skills of the profession as a constructor using the Solid Works	5			٧			V
	CAM(Solidworks,	program. The purpose of the discipline is to form students '							
	Inventor)	basic concepts of modeling(structure,							
		classification, application of models, requirements for							

					1	 	 1		
		models), to introduce students to the theoretical foundations							
		and ways of optimization of modeling processes in							
		Mechanical Engineering, processing and obtaining							
		information from various sources, to analyze the structure of							
		the model, to know its application ,to know the methods of							
		constructing models, to use modern applied programs in the							
		design of machine mechanisms and nodes. Machines, drives,							
		and systems being studied, development of physical and							
		mathematical models of phenomena and objects							
40		The concept of additive manufacturing. The history of the	5					V	V
		emergence and development of additive technologies. 3D							
		modeling as the basis of additive technologies. Type of print							
		FDM. Type of print SLA. Type of printing DLP. Print Type							
		SLS / SLM. Type of printing 3DP. Type of printing LOM.							
		Types of printing MJM, EBM. Optimization of additive							
	Additive	manufacturing. Preparation of 3D models for printing.							
	Manufacturing	Engineering calculations in additive manufacturing.							
		Accounting for the characteristics of materials in additive							
		manufacturing. The concept of slicers. Variations and							
		correlation of print parameters. Defects and their							
		classification. Post processing. Mechanical processing of							
		products. Heat treatment. Chemical treatment. Optimization							
		of the print taking into account post-processing.							
41		Objectives of the discipline: obtaining knowledge on the	6					V	V
		organization, methods of designing factories, workshops of							
		forging and stamping production, the basics and principles							
		of designing workshops of forging and stamping production,							
	Organization and	taking into account the generally accepted provisions of							
	Organization and planning of forging	lealculation and construction of technological processes torl							
	and stamping	manufacturing parts, devices, principles of processing and							
	production	assembly. Principles of designing workshops of forging and							
	production	stamping production, taking into account the generally							
		accepted provisions of calculation and construction of							
		technological processes for the manufacture of parts,							
		devices, principles of processing and assembly of forging							
		and stamping equipment.		 		 	 		
42		The purpose of the discipline is to prepare the student to	6					V	v
		solve problems related to the design of workshops, the ability							
	Production design	to find and choose progressive design and technological							
		solutions. The composition of the machine-building plant.							
		Determination of the quantity and loading of equipment.							

	7							 	
		Selection of the type and calculation of heating devices. Calculation of the number of workers. Determination of the areas of departments within the workshop. The layout of the main and auxiliary sections, the transport system of the workshop. Design methods. Classification and structure of the main workshops. Construction design. Automation of design of workshops of machine-building plants							
43	Composite materials processing technology	required energy state of the processed material, the use of combined energy effects that ensure high economic performance of products made of composite materials are studied.	5		V			V	
44	Properties and processing of engineering materials	Mechanical properties and structural strength of materials. Technological and operational properties of materials. Atomic-crystalline structure of metals and alloys. Deformation and destruction of materials. Theory of alloys. Iron and iron alloys. Technology of heat treatment of steel. Chemical heat treatment of surface hardening of parts. Alloy steels and alloys. General purpose structural steels. Tool alloys. Special alloys. Non-ferrous metals and alloys. Non-metallic materials. Powder materials. Composite materials.	5		V				V
45	Product Lifecycle Management	The purpose of the discipline is to generate knowledge in the field of automation of industrial product life cycle management, basic methods and technologies of life cycle management systems. Practical skills are acquired in automated systems of technical preparation of production and management, automated systems of enterprise management (PDM- product data management, PLM-Product Lifecycle Management), their individual subsystems, optimization of management according to the criterion of economic efficiency and high competitiveness of products, organization of a single information space about the product.	5			V			V
46	mechanical	The purpose of the discipline is to form knowledge of the concept of digital twins of processes in mechanical engineering, about the methods of computer modeling to	5					V	V

		support technologies, the possibility of creating and repairing industrial products. Methods of building digital copies of processes of varying complexity are studied; methods of creating digital and vector copies of products, working tools and wear-out parts without using design documentation; skills of working with modern CAD systems for the development of 3D models of processes and objects are improved.							
47		The purpose of mastering the discipline is to expand and deepen knowledge about modern project management technology and study the principles of using project management in practical tasks. Mastering the discipline involves an introduction to the problems of project management and the study of project management methodology, familiarization with the tools and methods of project management at all stages of the project life cycle, starting with initialization project, planning its work, organizing their use and control, and ending with completion.				V	V		
48	Capstone Project	The purpose of the discipline is the formation of a complex of theoretical knowledge and practical skills in management, maintenance and support of technical preparation of production. Practical possibilities are considered and professional skills of students to work in a team are formed. Students solve real engineering and technical problems of production, formation and implementation of the life cycle of machine-building products based on the collection of information, critical assessment of the feasibility of the project, in-depth analysis and execution of the project report.				V		V	

5 Curriculum of the educational program

KAZAKH NATIONAL RESEARCH TECHNICAL UNIVERSITY named after K.I.SATPAYEV Chairman of the Management Board-ector of Karara named after K.Satpayev SATBAYEV M.M. Begentaev UNIVERSITY CURRICULUM of Educational Program on enrollment for 2024-2025 academic year Educational program 6B07220- "Machines and technologies for processing ne Group of Educational programs B069 - "Production of materials (glass, paper, plantic, wood)" Duration of study: 4 years Academic degree: Bachelor of Engineering and Technology Form of study: full-time Total SIS Allocation of face-to-face training based of ocourses and semesters hours (includin III course amount control Discipling I course II course IV course g TSIS) in hours volume credits CYCLE OF GENERAL EDUCATION DISCIPLINES (GED) M-1. Module of language training 105 105 0/0/3 English language GED, RC Kazakh (Russian) language GED, RC 150 0/0/3 105 M-2. Module of physical training KFK 101- Physical Culture 0/0/8 120 Difcredit GED RC 8 240 M-3. Module of information technology Information and communication 2/1/0 105 5 technologies M-4. Module of socio-cultural development **HUM 132** Philosophy GED, RC Socio-political knowledge module (sociology, politology) 3 90 1/0/1 60 3 GED, RC Socio-political knowledge module HUM 134 150 2/0/1 150 E (culturology, psychology) M-5. Module of anti-corruption culture, ecology and life safety base Fundamentals of scientific MSM500 research methods Fundamentals of Economics and Entrepreneurship GED, CCH 150 2/0/1 150 E Fundamentals of Anti-corruption Culture and Law CHE 656 Ecology and life safety
MNG564 Basics of Financial Literacy CYCLE OF BASIC DISCIPLINES (BD) M-6. Module of physical and mathematical training MAT 101 Mathematics I 150 1/0/2 105 Physics I Mathematics II PHY112 Физика 11 BD, UC 150 1/1/1 105 M-7. General technical training module Introduction to engineering design BD, UC 150 0/0/3 105 7 Production workshops Standardization, interchangeability MCH532 BD. UC 5 150 1/1/1 105 3 5 and technical measurements BD, UC Classic mechanics Probabilistic models in industrial MSM106 BD. UC 5 150 17171 105 3 5 engineering BD, UC 150 1/2/0 105 Э Electrical and Electronics ELC101 BD: UC 5 150 1/1/1 105 3 5 engineering GEN408 Resistance of materials BD. UC 150 105 3 MSM420 Heating and heating devices BD, UC 120 1/0/2 75 9 Bases of designing and details of Э GEN125 BD, UC 150 1/1/1 105 Qualimetry in mechanical MCH531 BD, UC 75 120 2/0/1 3 engineering Forging and hot stamping 5 MCH416 BD, UC 150 1/2/0 105 3 5 BD, UC 1/0/2 Engineering Economy 150 Automated design of PMP MSM414 BD, UC 180 2/0/2 120 3 6 Hydraulics and hydropneumatic MSM149 BD, UC 150 1/0/2 105 7 5 Elective disciplines of the BD Theory of materials processing by ressure BD, CCH 150 E 1/0/2 105 5 undamentals of Artificial Intelligence Forging and stamping equipment

MNG563	Fundamentals of sustainable development and ESG projects in Kazakhstan	BD, CCH	5	150	2/0/1	105	Е						5		
MSM461	Design of forging and stamping equipment	BD, CCH	5	150	2/1/0	100									
MNG562	Legal regulation of intellectual property	bb, ccn	3	150	2/0/1	105	Э						5		
AAPI67	Training Practice	BD, UC	1						1						
CICLEO	F PROFILE DISCIPLINES (PD)		Λ.	f Q Madu	le of produ								7		
HYD482	Labor protection and industrial	BD. UC	5	150	2/0/1	105		icai prepa	ration				T		
MCH158	safety (by industry) Технология холодной						Э							5	
	штамповки Technological processes of	PD, UC	5	150	1/1/1	105	Э							5	
MSM129	machine-building production	PD, UC	5	150	2/1/0	105	Э						5		
MSM411	Computer-aided design systems of machine structures	PD, UC	4	120	1/2/0	75	Э								4
					Elective	discipline	s of the PI)						1	
MSM453 MSM413	Tool and mold design Advanced materials processing technologies	PD, CCH	6	180	2/0/2	120	Э								6
MCH159 MSM416	Fundamentals of designing machines for pressure treatment Welding equipment and tools	PD, CCH	5	150	2/0/1	105	Э								5
MCH149	CAM(Solidworks, Inventor)	PD, CCH	5	150	1/2/0	105	Э					-		-	
MSM119 MSM455	Additive manufacturing Organization and planning of	-, -, -, -, -, -, -, -, -, -, -, -, -, -		150	2/0/1	102	3		-					5	
4SM421	forging and stamping production Production design	PD, CCH	6	180	2/0/2	120	Э							6	
4SM412	Composite materials processing				1/2/0										
45M128	Properties and processing of	PD, CCH	5	150	1/2/0	105	Э					5			
4SM467	engineering materials Engineering Product Lifecycle					1			-	-					
	Management Digital twins in mechanical	PD, CCH	5	150	1/0/2	105	Э							5	
ACH523 AP197	engineering Industrial practice I	PD UG			1/2/0										
AP176	Industrial practice II	PD, UC PD, UC	5								4				
121		10,00		M-9. Mar	agement t	raining m	odule (El	ective R&	(D)				5		
1NG481	Theory and practice of project		-		2/0/1										
(SM418	management Capstone Project	PD, CCH	5	150	1/2/0	105	E								5
					M-10. Mo	dule of fin	al attestati	ion							
ECA109	Writing and defending a thesis (project)	FE	8												8
				M-11.	Module o	f addition:	al types of	training							
	Military affairs Total based on UNIVERSITY:	ATT	0					22	20	- 10					
								32	28	32	28	30	30	32	28
	Number of credits for Cycles of disciplines	or the entire	period of s		dits										
Cycle code			required component (RC)	university component (UC)	component of choice (CCH)	Total									
			req com	univ com	comp	Ţ									
	Cycle of general education disciplines Cycle of basic disciplines		51	101	5	56									
	Cycle of profile disciplines			23	37	116									
FA	Final attestation	ical training:	<i>51</i>	124	57	232									
	- This divesticion	TOTAL:	59	124	57	240									
ecision of th	e Academic Council of Kazntu name	d after K.Sato	ayev. Prot	col Noten	"22"		4 v.								
ecision of th	e Academic Council of Kazatu named e Educational and Methodological Co e Academic Council of the Institute 1 Board Member -Vice-Rector fo	ouncil of Kazr E&ME, Proto	ntu named a	fter K.Sat	Dayev, Prot	ocol N2 6 o	т " <u>/9</u> "	<i>04</i> 20 2	l⊈y.						
		titute Directo				K. Yeleme									
		artment Hea		141		E.Nugmai	1								
	Specialty Council representative	e from emplo	oyers	Dea	4-	I. Dyuseba	aev								